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1. Introduction 

1.1. Scope 

The Data Engine (DE) Version 1 provides the connection of TangerineSDR modules 
(Receiver, Clock, Magnetometer, VLF receiver) with an FPGA. The network interface 
connects the DE to the Local Host (LH) using 1 Gigabit Ethernet. The control interfaces 
to the hardware peripheral modules are via I2C and SPI. The clock module also uses 
USB connections but these are not provided by the DE. There are other module-specific 
data interfaces to the various receiver modules. The DE Version 1 hardware contains a 
MAX10 FPGA to control the system, and to communicate with the Local Host computer 
via 1 GbE. 
 
The MAX10 Development Kit contains a subset of the interfaces provided by the DE. An 
adaptor board is used to connect the DevKit to the Receiver, Clock, and other 
peripherals. The DevKit will be used for initial prototype development until the actual DE 
is available and tested. 
 
This document outlines the architecture of the FPGA firmware and software to 
accomplish the TangerineSDR initial objectives. It also discusses some alternative 
approaches for controlling the DMA engines. 
 

1.2. FPGA Overview 

The FPGA firmware is created using Altera/Intel Quartus II version 20.1.written in 
Verilog, and synthesized to a binary loadable image for the FPGA. There are three main 
sections of FPGA firmware: 

1. The digital signal processing, buffer management and signal I/O. 
a. This code will be hand written in Verilog. 

2. The NIOS II processor, peripherals, DDR3RAM, QSPI flash memory, internal 
RAM, DMA controllers, timers, and the Ethernet interface. 

a. This code is designed using the Platform Designer (Qsys) graphical GUI 
tool. It is then synthesized to Verilog by the Quartus Qsys tool. 

b. About 50% of the FPGA capacity is consumed by the processor and 
peripherals synthesized by the Qsys tools. 

3. C-code running on the NIOS processor. This software initializes the system, 
controls the peripherals, and processes the Local-Host-to-Data-Engine protocol 
packets. 

a. This code is written using the Quartus Eclipse-based design environment 
which provides the proper software libraries and linkage. 
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b. The code relies on the Altera-supplied RTOS (uCOSII) and TCP/IP stack 
software (Nichestack). Nichestack is deprecated in later versions of the 
Quartus toolset. 

c. The NIOS executable code may be bundled with the Verilog from 1) and 
2) into a single unified binary for download to the FPGA. The Quartus 
toolset also allows separating the software binary from 3) into a separate 
download should only the software portion need to be updated. 

The Verilog generated for 1) and 2) above needs to co-exist in the Verilog module 
namespace. Traditionally this would be done by creating a top_level Verilog module that 
instantiates both sections (NIOS and Tangerine). Currently however Quartus requires 
the Qsys Verilog to be defined as the top module. To solve this problem (perhaps 
temporarily perhaps not) the DSP and other Verilog from section 1) in included via a file 
include directive inside the Qsys generated top_level so as to appear as a top level 
module along with the Qsys module. The Qsys top level module is called m10_rgmii.v 
while the module from 1) is called Tangerine.V. In this way, all the code in the 
Tangerine module is fully isolated from the Qsys modules and appears as a separate 
top_level module. If Qsys were to over-write the synthesized top_level module, only a 
single `include directive needs to be retyped into m10_rgmii.v 

1.3. Phased Development Approach 

The initial FPGA firmware and software will be targeted at debugging the receiver 
module using the MAX10 DevKit. 

1.3.1. Phase 1A 

Phase 1A will test the I2C and SPI registers on the receiver. This will demonstrate 
proper connection of the MAX10 development kit, adaptor board, and receiver module 
as well as proper communication with the FPGA using gigabit Ethernet, processing the 
LH-DE protocol discovery of the DevBoard, and processing of the Module Read (MR) 
and Module Write (MW) commands. The test should be able to: 
 

 Acquire a DHCP address (static IP not yet supported, MAC address hard-
coded). 

 Respond to OpenHPSDR discovery broadcast. 

 Turn each of the 6 relays on and off and turn the two LEDs on and off. 

 Read the Ident PROM unique serial number. 

 Read and write the ADC via the SPI interface. 
 

1.3.2. Phase 1B 

Phase 1B will be to pack roughly 1500 bytes of data from a single receiver channel into 
a sequence of Ethernet frames on the data socket. These frames will consist of raw 
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ADC samples. Initially the ADC can be programmed to send various test patterns on the 
receiver DDR interface. This test will verify that the DDR interface is operating properly 
and the patterns can be properly received. Once that is achieved, the actual receiver 
data will be sent from one channel via the DDR interface. This will consist of a 
sequence of data frames that are contiguous in time for 16384 samples, then idle. 
These will be sent to gnuradio via a UDP socket block. The delimiting 0th sample will 
have a special mark in the header that allows a custom gnuradio OOT module to 
properly group this sequence into a single gnuradio vector. The sequence will be 
repeated at a slow rate of a few vectors per second. This is essentially a wideband 
spectrum from the receiver. A gnuradio flowgraph will be constructed to analyze these 
vectors to look for the presence of sampling and other spurs amid the base noise 
sequence. 

1.3.3. Phase 1C 

Phase 1C will use a NCO / Sin-Cos generator and a sequence of CIC and FIR filters to 
source a single downconverted RF channel to the Ethernet stream. This stream will be 
sent to gnuradio using a standard UDP socket where the samples can be analyzed. 
Gnuradio flowgraphs will be constructed to analyze the Noise Figure of the receiver at a 
couple of discrete RF channel frequencies. Additionally (depending on test equipment 
availability) the 3rd order dynamic range of the receiver will be estimated. 
 
It is anticipated that the tests through Phase 1 will be able to use processor-directed 
DMA engines and FIFOs to pass a limited amount of data to the attached gnuradio 
platform, which is anticipated to be a Linux based host, likely a general purpose desktop 
computer. 

1.4. Phase 2 

Continued development during Phase 2 will include additional LH-DE protocol 
processing, multiple channels, clock module testing, etc. The needed data throughput is 
much higher. The details are TBD at this point. 
 

2. DMA of Data I/O 

 
One key architectural issue is that the dual ADC converter receiver module can produce 
samples at a very high rate of speed. That sample rate needs to be reduced before the 
frames can be sent over the 1 GbE UDP socket. The concern is that the NIOS 
processor may not be fast enough to handle the rate of packets that could be emitted.  
 
Some back-of-the-envelope numbers help illustrate the issue. The two receivers are 
synchronously clocked at 122.88 MHz and produce 14-bit receiver samples plus over-
range. For simplicity this will be transferred as a 16-bit word for each channel per clock 
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cycle. The FPGA hardware clocks samples into the FPGA using a 16-bit wide 
differential DDR (Double Data Rate interface) operating at a 245.76 MHz clock rate. The 
total data sample rate is: 
 

122.88 Ms/s * 4 bytes * 8 bits/byte = 3.932 16 Gb/sec. 
1 / 122.88 Ms/s = 8.14 nanoseconds per 4 bytes. 

 
The 1 GbE interface cannot stream at 4 Gb/s obviously, so the data streams need to be 
decimated. 
 
Each packet needs to have a UDP socket header added (presumably from a table 
constructed in RAM by the NIOS processor).  
 
The protocol spec lists 1024 bytes of data per frame as desirable. For Ethernet, a 1500-
byte frame is largest standard-sized frame allowed. Jumbo frames can allow up to about 
9k bytes for frame. At a speed of 1 Gb/s, the frame time is: 
 

1024 bytes + 22 bytes overhead = 8.514 microseconds per Ethernet frame 
1500 bytes + 22 bytes overhead = 12.176 microseconds 
9000 bytes + 22 bytes overhead = 72.176 microseconds. 

 
The NIOS processor may not be able to service an interrupt and handshake the frame 
each 8, or 12, or 72 microseconds. It needs to find the packet in memory, append the 
appropriate UDP header, then link the start address and length of the packet into the 
DMA controller descriptor table. After transmission (interrupt) it needs to de-link and 
recycle the sent buffer. With jumbo frames this problem becomes easier. 
 
The NIOS processor has a maximum asynchronous clock speed of 160 MHz, but the 
actual processor core needs to run on the system clock (so that it can synchronize 
memory and peripheral reads and writes). 
 
The processor is estimated to be able to process an assembly instruction roughly once 
each 40 nsec. period (25 MHz.) thus providing roughly: 
 

 212 instructions for 1024 byte data frames. 

 304 instruction cycles for normal frames. 

 1800 instruction cycles for Jumbo frames. 
 
The actual interrupt handler must be significantly shorter in order to allow time for non-
interrupt processing to occur. 
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2.1. Phased DMA implementation 

 
The first prototype of the implementation will try processor-based interrupt handling of 
the DMA controllers to test how practical that approach is, and to quickly get to a 
minimal level of receiver performance in order to characterize the receiver. 
 
The receiver characterization needs two different types of data streams: 
 

1. Downconverted, decimated receiver data. This is used to calculate the Noise 
Figure (NF) of the receiver. Different frequency bands will be hand-selected to 
provide NF estimates across the 100 KHz to 60 MHz range of the receiver. It also 
provides a way to characterize the dynamic range of the receiver.  

2. Wideband interrupted data. This consists of a run of 16384 contiguous time 
samples with a long dead time in between each run. This allows measuring the 
presence of spurious signals across the entire receiver frequency range. 

 

2.2. Longer term DMA implementation 

 
If shorter packets are needed (for example 1024 bytes) then the NIOS performance 
required increases. After Phase 1 it can be decided how the final DMA architecture 
should be done. 
 
A phase 2 architectural approach might then be to have the NIOS processor setup all 
the receiver conditions (number of channels to be downconverted, frequencies, 
decimation rate, number of wideband channels and how they are time-gapped) and to 
set up buffer descriptors for all the above. Then Scatter-Gather DMA controllers would 
be responsible for transferring the data blocks to the Ethernet Verilog module. The 
Verilog would need to handle packing buffers and queuing them to the SGDMA 
engines, and de-queuing and recycling spent buffers. 
 
The NIOS processor would still talk directly to the Ethernet frames via a socket 
interface, but it would only process command, control, and provisioning packets, not 
actual data packets. 
 
 
 
 
 
 


